Evolutionary Aeroelastic Design of Flying-Wing Cross Section

Abstract

The uniform distribution of stresses in flying-wing aircraft improves the aeroelastic flight envelope. In this paper, we document the effect of wing cross-section configuration on the stress distribution and flutter characteristics of a flying-wing aircraft. We determined the flow of stresses through the wing structure, and changed the structure to avoid stress strangulations. The emerging structure is more stable. We used the computer programs Gmsh, Variational Asymptotic Beam Sectional Analysis, and Nonlinear Aeroelastic Trim and Stability of High Altitude Long Endurance Aircraft. The wing structure was evolved by holding fixed the flight condition, mass per unit length, and material type. The results indicate that particular configurations of wing cross sections favor a uniform stress distribution, and therefore aeroelastic stability. The configuration with higher flutter speed is associated with the smoother flow of stresses through the wing structure.

DOI
10.2514/1.J060410
Year